Search results for "Single-scattering albedo"
showing 10 items of 31 documents
Aerosol properties of the Eyjafjallajökull ash derived from sun photometer and satellite observations over the Iberian Peninsula
2012
The Eyjafjallajökull ash that crossed over Spain and Portugal on 6e12 May 2010 has been monitored by a set of operational sun photometer sites within AERONET-RIMA and satellite sensors. The sun photometer observations (aerosol optical depth, coarse mode concentrations) and ash products from IASI and SEVIRI satellite sensors, together with FLEXPART simulations of particle transport, allow identifying the volcanic aerosols. The aerosol columnar properties derived from inversions were investigated, indicating specific properties, especially regarding the absorption. The single scattering albedo was high (0.95 at 440 nm) and nearly wavelength independent, although with slight decrease with wave…
A Comparative Analysis of Aerosol Microphysical, Optical and Radiative Properties during the Spring Festival Holiday over Beijing and Surrounding Reg…
2018
ABSTRACT Using ground-based data, meteorological observations, and atmospheric environmental monitoring data, a comparative analysis of the microphysical and optical properties, and radiative forcing of aerosols was conducted between three stations in different developed environments during a severe air pollution episode during the Spring Festival over Beijing. During the most polluted period, the daily peak values of the aerosol optical depth were ~1.62, ~1.73, and ~0.74, which were about 2.6, 2.9, and 2.1 times higher than the background levels at the CAMS, Xianghe, and Shangdianzi sites, respectively. The daily peak values of the single scattering albedo were ~0.95, ~0.96, and ~0.87. The…
Analysis of a strong wildfire event over Valencia (Spain) during Summer 2012 – Part 1: Aerosol microphysics and optical properties
2013
Abstract. The most intense wildfire experienced in Eastern Spain since 2004 happened in Valencia during summer 2012. Although the fire was mostly active during days 29–30 June, a longer temporal period (from 24 June to 4 July) was selected for this analysis. Column-integrated, vertical resolved and surface aerosol observations were performed continuously at the Burjassot station throughout the studied period. The aerosol optical depth at 500 nm shows values larger than 2 for the most intense part of the wildfire and an extremely high maximum of 8 was detected on 29 June. The simultaneous increase of the Ångström exponent was also observed, indicating the important contribution of small part…
Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET
2016
SKYNET and Aerosol Robotic Network (AERONET) retrieved aerosol single scattering albedo (SSA) values of four sites, Chiba (Japan), Pune (India), Valencia (Spain), and Seoul (Korea), were compared to understand the factors behind often noted large SSA differences between them. SKYNET and AERONET algorithms are found to produce nearly same SSAs for similarity in input data, suggesting that SSA differences between them are primarily due to quality of input data due to different calibration and/or observation protocols as well as difference in quality assurance criteria. The most plausible reason for high SSAs in SKYNET is found to be underestimated calibration constant for sky radiance (ΔΩ). T…
Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79° N
2020
Despite the potential importance of black carbon (BC) for radiative forcing of the Arctic atmosphere, vertically resolved measurements of the particle light scattering coefficient (σsp) and light absorption coefficient (σap) in the springtime Arctic atmosphere are infrequent, especially measurements at latitudes at or above 80∘ N. Here, relationships among vertically distributed aerosol optical properties (σap, σsp and single scattering albedo or SSA), particle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9 and 83.4∘ N from near the surface to 500 hPa. Airborne data collected during April 2015 are combined with gro…
Black and brown carbon over central Amazonia: long-term aerosol measurements at the ATTO site
2018
The Amazon rainforest is a sensitive ecosystem experiencing the combined pressures of progressing deforestation and climate change. Its atmospheric conditions oscillate between biogenic and biomass burning (BB) dominated states. The Amazon further represents one of the few remaining continental places where the atmosphere approaches pristine conditions during occasional wet season episodes. The Amazon Tall Tower Observatory (ATTO) has been established in central Amazonia to investigate the complex interactions between the rainforest ecosystem and the atmosphere. Physical and chemical aerosol properties have been analyzed continuously since 2012. This paper provides an in-depth analysis of t…
Contrast in column-integrated aerosol optical properties during heating and non-heating seasons at Urumqi — Its causes and implications
2017
Abstract Aerosol optical properties were retrieved from two years' worth of Sunphotometer measurements at Urumqi, an urban station in western China. Distinct seasonal variations of aerosol optical properties were revealed. During the heating season, mean aerosol optical depth at 550 nm (τ a ), Angstrom exponent calculated from aerosol optical depth at wavelength of 440 and 870 nm (α) as well as PM 2.5 concentration were 0.58 ± 0.33, 1.11 ± 0.34 and 79.5 ± 69.6 μg m − 3 , respectively, which contrasted their counterparts during the non-heating season of 0.32 ± 0.22, 0.79 ± 0.26, and 35.0 ± 20.1 μg m − 3 . Seasonal variations of τ a and PM 2.5 at Urumqi contrasted with corresponding values in…
Aerosol influence on radiative cooling
2011
Aerosol particles have a complex index of refraction and therefore contribute to atmospheric emission and radiative cooling rates. In this paper calculations of the longwave flux divergence within the atmosphere at different heights are presented including water vapour and aerosol particles as emitters and absorbers. The spectral region covered is 5 to 100 microns divided into 23 spectral intervals. The relevant properties of the aerosol particles, the single scattering albedo and the extinction coefficient, were first calculated by Mie-theory and later by an approximation formula with a complex index of refraction given by Volz. The particle growth with relative humidity is also incorporat…
Evaluation of the new ESR network software for the retrieval of direct sun products from CIMEL CE318 and PREDE POM01 sun-sky radiometers
2012
Abstract. The European Skynet Radiometers network (EuroSkyRad or ESR) has been recently established as a research network of European PREDE sun-sky radiometers. Moreover, ESR is federated with SKYNET, an international network of PREDE sun-sky radiometers mostly present in East Asia. In contrast to SKYNET, the European network also integrates users of the CIMEL CE318 sky–sun photometer. Keeping instrumental duality in mind, a set of open source algorithms has been developed consisting of two modules for (1) the retrieval of direct sun products (aerosol optical depth, wavelength exponent and water vapor) from the sun extinction measurements; and (2) the inversion of the sky radiance to derive…
Aerosol columnar properties retrieved from CIMEL radiometers during VELETA 2002
2008
During the 2002 summer, the VELETA 2002 field campaign has been carried out at the Sierra Nevada Massif, close to Granada in South-Eastern Spain. During the campaign, CIMEL CE-318 robotic radiometer has been one of the key instruments in the characterization of the atmospheric aerosol columnar properties. This kind of radiometers have been operated at Motril, a coastal location at sea level, Pitres (1200 m a.s.l.), located in the South slope of Sierra Nevada Massif, Las Sabinas (2200m a.s.l.), located on the north slope of the mountain range, and Armilla (680m a.s.l.), located in the valley. The principal feature of the locations is that they provide a strong altitudinal gradient. This work…